
256

International Research Symposium on Engineering Advancements 2015 (RSEA 2015)
SAITM, Malabe, Sri Lanka

A FRAMEWORK FOR FULFILLING COMPLEX, STAKEHOLDER
SPECIFIC INFORMATION REQUIREMENTS BY MINING MULTIPLE

SOFTWARE REPOSITORIES

C .K. Kumarasinghe1, C. P. Wijesiriwardana1 and M. I. M. Nasmin1

1Department of Information Technology, Faculty of Information Technology, University of Moratuwa
Sri Lanka.

Email: kaushalyak@uom.lk, chaman@uom.lk, nasmin1990@gmail.com

ABSTRACT

Recent studies have highlighted the importance of obtaining useful and up-to-date information about a
software project to its stakeholders such as developer, testers, and project managers. Providing
information about a software project, which is specific to a particular stakeholder, is a challenging task.
This is mainly because historical data about software projects is scattered across multiple repositories
such as version control systems, bug tracking systems, and email archives. Therefore, obtaining required
information is cumbersome. To tackle this problem, we propose a semi-automated approach for
analyzing software projects; hence it allows providing useful and timely information to the stakeholders.
This paper presents two main contributions to the software engineering community. Firstly, it consists of
a comprehensive study to categorize the questions asked by software practitioners based on the task
complexity, stakeholder type, and task category. We believe that, this classification could be used as a
software analysis handbook for the practitioners. Secondly, our proposed approach suggests a flexible
model to answer the questions and validate the accuracy of the responses. The model has been evaluated
with a set of experiments; in which we obtained encouraging results.

Keywords: software analysis, mining software repositories, software evolution

1. INTRODUCTION

Recent years have witnessed extensive studies on
mining software repositories for extracting
information related to software evolution [4].
These repositories include version controlling
systems (i.e. Github, SVN), bug repositories (i.e.
Bugzilla, JIRA), and build process monitoring
tools (i.e. Jenkins) where the information seekers
can find out various types of valuable
information related to the evolution of a
particular software.

There are several challenges in software
evolution analysis [1]. Providing information,
which is specific to a particular stakeholder, is
one of the major challenges in software evolution
analysis. The software development process
consists of many stakeholders such as project
managers, business analysts, software architects,
software engineers, quality assurance engineers,
who mine software repositories from their own
perspectives. For an example, a project manager
may be interested in finding out the workload and
deadlines of the team members whereas a
software engineer may want to find out the
changes made by the other software engineers for
the software module he/she is working on.
Another challenge in software evolution analysis

is the requirement of extracting data from
multiple data streams. For an example, if
someone wants to find the number of bugs
reported between two builds, he/she should mine
information from both bug repositories and build
process monitoring systems. Moreover, such
information should be presented to the
information seeker as a cumulative output of
those multiple data streams.

In this paper, we address the above challenges in
current state-of-the-art research and present a
software evolution analysis framework that is
capable of facilitating complex, stakeholder
specific information requirements that need to be
answered by analyzing multiple software
repositories. Moreover, we describe our
experimental procedure and obtained results for
software evolution analysis.

The rest of this paper is organized as follows.
Section 2 reviews the related research on
fulfilling the information needs of different
stakeholders for software evolution analysis. The
Section 3 describes the research problem
addressed through this paper. The Section 4
presents the proposed service-oriented approach
for mining multiple software repositories to
fulfill the information requirements of different

mailto:kaushalyak@uom.lk�
mailto:chaman@uom.lk�
mailto:nasmin1990@gmail.com�

257

International Research Symposium on Engineering Advancements 2015 (RSEA 2015)
SAITM, Malabe, Sri Lanka

stakeholders. Section 5 presents the results and
the evaluation of the proposed method followed
by the discussion and future work in Section 6.

2. RELATED WORK

Fulfilling the information requirements of the
stakeholders in software development lifecycle is
an essential but a challenging task in software
evolution analysis. Several recent studies have
examined that the questions asked by different
stakeholders [1] for fulfilling different types of
information requirements such as information
related to bug reports and source codes, progress
of the software development process and quality
of the software. In the first phase of our research,
we analyzed those questions and categorized
them according to the complexity, the type of the
stakeholder and task category. In the next step,
we conducted an analysis of the available tools
for answering the questions (Q1 – Q16) asked by
the development team.

Q1 What is the size of project x?
Q2 Who is working on project x?
Q3 Who is working on what?
Q4 What is the number of commits made

by developer x in project y?
Q5 What are the coworkers working on

right now?
Q6 How much work people have done?
Q7 Who changed this code?
Q8 Who to assign a code review to?
Q9 Which code review has been assigned

to which person?
Q10 Who is working on the same class?
Q11 What are the changes of newly

resolved work items related to me?
Q12 Who has worked with this package?
Q13 Who is accessing a particular API?
Q14 What is the average line of code of

developer x per day?
Q15 Who has changed the code between

two successful builds?
Q16 What is the amount of bug records

between two successful builds?

Several researchers have been working on
developing tools that can be used to fulfill the
information requirements of the stakeholders.
Brandtner et al. in [1] presents a service-oriented
approach for fulfilling the information
requirements of stakeholders called SQA-
Mashup. This works as a quality awareness
platform, which integrates information from
Continuous Integration Tools according to the
information requirements of stakeholders and
presents as a single service. The flexibility of

web service integration is achieved through a
mashup-based approach [2, 3]. A mashup
facilitates a pipe and filter based integration of
data sources. From the backend, an integration
pipe is described as a series of pipe and filter
steps in which the execution of the pipe is
triggered by a web service call. The tool also
provides two views (from the front end) for
developers and testers.

Fritz et al. in [4] presents an information
fragment model and a prototyping tool that
automates the composition of the required
information. This introduces an information
fragment model, a relatively simplified approach
for answering the questions.

Despite the success of the above methods, most
existing approaches suffer from several critical
limitations. They typically facilitate information
seekers to answer simple questions based on
predefined workflows. Hence, users are unable to
perform complex analysis, which require
processing information from multiple software
repositories. Further, these tools are designed for
fulfilling information requirements of few
stakeholders, which may not ultimately address
the information needs of all interested parties in
the software development process. In particular,
according to the best of our knowledge there is
no tool that is capable of answering the complex,
information seeker specific questions, which are
required to be answered by mining multiple
software repositories.

Table 1 : Comparison of Available Tools

Fe
at

ur
e

So
na

rq
ub

e

SQ
A

-
M

as
hu

p
SQ

uO
R

E

Sq
ua

le

Service Oriented    
CI Tool’s API
Integration

   

Customized View    
Software Matrics    
Data Integration    

3. OUR APPROACH

To address these limitations, in this paper, we
propose a semi-automated approach for
analyzing software evolution. This paper
provides two main contributions to the software
engineering community. Firstly, it consists of a
comprehensive study to categorize the questions
asked by software practitioners based on the task
complexity, stakeholder type and data source. We

258

International Research Symposium on Engineering Advancements 2015 (RSEA 2015)
SAITM, Malabe, Sri Lanka

believe that this classification could be used as a
software analysis handbook for the practitioners.
Secondly, our proposed approach suggests a
flexible model to answer the questions and
validate the accuracy of the answers. Hence, our
work differs from the state-of-the-art research
considerably as this approach facilitates the
stakeholders to answer complex, information
seeker specific questions that need to be
answered by mining multiple software
repositories.

3.1 Our Classification

In this section, we present our classification of
the questions asked by the development team.
The classification was performed based on three
criterions; the complexity of the task, stakeholder
type, and data source.

The questions mentioned in section 2 can be
categorized into two classes based on its
complexity. The simple questions can be
answered directly by fetching information from
the corresponding data source. For an example,
Q1, Q2, can be answered directly by calculating
the number of lines from the software repository.
Contradictorily, questions like Q5, Q15 cannot be
directly answered from data sources. To answer
such questions, the data fetched from the data
sources should be further filtered based on the
conditions.

These questions can also be categorized
according to the type of stakeholder. For an
example, questions such as Q2, Q3, Q15 are
Project Manager specific questions while Q11,
Q12, Q13 are Developer specific questions.
Further a part of this question set can be
answered by taking data from multiple data
sources (i.e. Q16).

3.2 Tool Support

We use Application Programming Interfaces of
various Continuous Integration tools to gather
data. We process the data and transfer to a
common data format. In the pipeline integration
we bind the data to pipes. The stakeholders can
drag and drop the pipes so that they can tailor
their needed information. In the data extraction
process we will use a web client to generate the
information needed to create the default view of
any stakeholders.

Data Extraction and Processing
We use the APIs of the CI-tools to gather data
from the CI tools; we also implement a new

module and take the information from the API.
Most of the CI tools provide a rest API. Eg
GitHub. We gather commit data from GitHub
using its API. Jenkins will provide Build related
information such as the build date and Build
versions. JIRA will provide bug related data such
as the fixed bugs, assignee and assign date, etc.

Service Composition
There are certain quality measures stakeholders
often need. We planned to provide those quality
measures in a default view. Here we use different
services from the CI tools and use a better service
composition to determine the software quality.
The characteristics and the parameters will be
changed in this domain. Therefore, we need to
change the composition algorithm to include
those changes in this domain.

Pipe Implementation
We have used the pipeline implementation to
make the job easy. Usually, piping is used in
scenarios where multiple queries need to run a
data set to generate the result. Quality
information from various CI tools is bound to
pipes. Piping technology allows a set of pipes to
combine in a way. So the data in the pipes can
deliver useful information. For example, Yahoo
Pipes. Piping technology provides combining any
number of pipes. We use this feature to allow
stakeholders to customize the software quality
information according to stakeholders’
preference.

Pipe Execution and Presentation
Our solution is consisting two views they are
customized views and default views. Default
view provides answer for the static questions that
are frequently needed for different stakeholders.
The customized view shows the information
based on the particular stakeholders needs and
interest.

Customized View
Every Stakeholder has different information
need. We consider only the developer’s needs of
software quality information and narrow down
the scope. We did a survey to find the software
quality information needs of developer’s and
could find that they are dynamic. Therefore we
provide a way to customize the query.

4. EVALUATION

We conducted an extensive set of experiments to
evaluate the applicability of the above approach
in which the encouraging results validated the
effectiveness of the proposed method. The

259

International Research Symposium on Engineering Advancements 2015 (RSEA 2015)
SAITM, Malabe, Sri Lanka

evaluation consists of two main parts. Due to the
space limitations we will only describe how to
solve a simple question and a complex question
using our tool.

Q4. What is the number of commits made by
developer x in project y?

Figure 1 : Workflow to answer Q4

This question falls into the simple category and,
therefore, the answer is straightforward. It
requires gathering information from the Git
repository and filtering the commits based on the
name of the developer. Figure 1 is the high-level
workflow to solve the problem.

Q16. What is the amount of bug records
between two successful builds?

Figure 2 : Workflow to answer Q16

This question falls into the complex category and
still our tool is capable of providing the solution
to the interested stakeholder. It requires gathering
data from Git repository and Jenkins repository.
Several activities are performed in parallel and
then the results are combined together. Figure 2
is the high-level workflow to solve the problem.

5. DISCUSSION AND FUTURE WORK

Several recent studies have examined the
questions asked by different stakeholders in
software evolution analysis. Despite the success
of the above methods, most existing approaches
suffer from several critical limitations. Firstly,
these tools facilitate information seekers only to
based on predefined workflows. Secondly, such
tools are not designed to fulfill the information
requirements of all the stakeholders. To tackle
this problem, we propose a semi-automated
approach for analyzing software projects; hence it
allows providing useful and timely information to
the stakeholders. This paper provides two main
contributions to the software engineering
community. Firstly, it consists of a
comprehensive study to categorize the questions
asked by software practitioners based on the task
complexity, stakeholder type and task category.

6. REFERENCES

[1] M. Brandtner, E. Giger, H. Gall, "Supporting
continuous integration by mashing-up software
quality information," Software Maintenance,
Reengineering and Reverse Engineering,
Software Evolution Week - IEEE Conference on,
pp.184,193, 3-6 Feb. 2014

[2] L. Grammel, C. Treude and M. “Anne Storey.
2010. Mashup environments in software
engineering” In Proceedings of the 1st Workshop
on Web 2.0 for Software Engineering (Web2SE
'10). ACM, New York, NY, USA, 24-25

[3] K. T. Stolee and S. Elbaum, “Refactoring
pipe-like mashups for end-user programmers”.
In Proceedings of the 33rd International
Conference on Software Engineering (ICSE '11).
ACM, New York, NY, USA, 81-90, 2011

[4] T. Fritz and G. C. Murphy, “Using
information fragments to answer the questions
developers ask” In Proceedings of the 32nd
ACM/IEEE International Conference on
Software Engineering - Volume 1 (ICSE '10),
Vol. 1. ACM, New York, NY, USA, 175-184,
2010

